在医疗保健系统中,需要患者使用可穿戴设备进行远程数据收集和对健康数据的实时监控以及健康状况的状态。可穿戴设备的这种采用导致收集和传输的数据量显着增加。由于设备由较小的电池电源运行,因此由于设备的高处理要求以进行数据收集和传输,因此可以快速减少它们。鉴于医疗数据的重要性,必须所有传输数据遵守严格的完整性和可用性要求。减少医疗保健数据的量和传输频率将通过使用推理算法改善设备电池寿命。有一个以准确性和效率改善传输指标的问题,彼此之间的权衡,例如提高准确性会降低效率。本文表明,机器学习可用于分析复杂的健康数据指标,例如数据传输的准确性和效率,以使用Levenberg-Marquardt算法来克服权衡问题,从而增强这两个指标,从而通过少较少的样本来传输,同时保持维护准确性。使用标准心率数据集测试该算法以比较指标。结果表明,LMA最好以3.33倍的效率进行样本数据尺寸和79.17%的精度,在7种不同的采样案例中具有相似的准确性,用于测试,但表明效率提高。与具有高效率的现有方法相比,这些提出的方法使用机器学习可以显着改善两个指标,而无需牺牲其他指标。
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Previous video-based human pose estimation methods have shown promising results by leveraging aggregated features of consecutive frames. However, most approaches compromise accuracy to mitigate jitter or do not sufficiently comprehend the temporal aspects of human motion. Furthermore, occlusion increases uncertainty between consecutive frames, which results in unsmooth results. To address these issues, we design an architecture that exploits the keypoint kinematic features with the following components. First, we effectively capture the temporal features by leveraging individual keypoint's velocity and acceleration. Second, the proposed hierarchical transformer encoder aggregates spatio-temporal dependencies and refines the 2D or 3D input pose estimated from existing estimators. Finally, we provide an online cross-supervision between the refined input pose generated from the encoder and the final pose from our decoder to enable joint optimization. We demonstrate comprehensive results and validate the effectiveness of our model in various tasks: 2D pose estimation, 3D pose estimation, body mesh recovery, and sparsely annotated multi-human pose estimation. Our code is available at https://github.com/KyungMinJin/HANet.
translated by 谷歌翻译
For ensuring vehicle safety, the impact performance of wheels during wheel development must be ensured through a wheel impact test. However, manufacturing and testing a real wheel requires a significant time and money because developing an optimal wheel design requires numerous iterative processes to modify the wheel design and verify the safety performance. Accordingly, wheel impact tests have been replaced by computer simulations such as finite element analysis (FEA); however, it still incurs high computational costs for modeling and analysis, and requires FEA experts. In this study, we present an aluminum road wheel impact performance prediction model based on deep learning that replaces computationally expensive and time-consuming 3D FEA. For this purpose, 2D disk-view wheel image data, 3D wheel voxel data, and barrier mass values used for the wheel impact test were utilized as the inputs to predict the magnitude of the maximum von Mises stress, corresponding location, and the stress distribution of the 2D disk-view. The input data were first compressed into a latent space with a 3D convolutional variational autoencoder (cVAE) and 2D convolutional autoencoder (cAE). Subsequently, the fully connected layers were used to predict the impact performance, and a decoder was used to predict the stress distribution heatmap of the 2D disk-view. The proposed model can replace the impact test in the early wheel-development stage by predicting the impact performance in real-time and can be used without domain knowledge. The time required for the wheel development process can be reduced by using this mechanism.
translated by 谷歌翻译
Google,Amazon和Microsoft等提供商提供的商业ML API已在许多应用程序中大大简化了ML的采用。许多公司和学者都为使用ML API用于对象检测,OCR和情感分析等任务。处理相同任务的不同ML API可能具有非常异构的性能。此外,API的基础模型也随着时间的推移而发展。随着ML API迅速成为一个有价值的市场,并且是消耗机器学习的广泛方式,因此系统地研究和比较不同的API并表征API随时间变化的方式至关重要。但是,由于缺乏数据,目前该主题目前没有被忽视。在本文中,我们介绍了HAPI(API的历史),该数据集由1,761,417个商业ML API应用程序(涉及来自亚马逊,Google,IBM,Microsoft和其他提供商的API),包括图像标签,文本识别和文本识别和文本识别和文本,从2020年到2022年的挖掘。每个实例都由API的查询输入(例如图像或文本)以及API的输出预测/注释和置信分数组成。 HAPI是ML API使用情况的第一个大型数据集,并且是研究ML-AS-A-Service(MLAAS)的独特资源。作为HAPI启用的分析类型的示例,我们表明ML API的性能会随着时间的流逝而大幅变化 - 在特定基准数据集上删除了几个API的精度。即使API的汇总性能保持稳定,其误差模式也可以在2020年至2022年之间在不同的数据子类型中转移。这种更改可能会大大影响使用某些ML API作为组件的整个分析管道。随着时间的流逝,我们进一步使用HAPI研究人口亚组的商业API绩效差异。 HAPI可以刺激MLAA的不断发展领域的更多研究。
translated by 谷歌翻译
如今,随着发现的OSS漏洞的数量,开源软件(OSS)漏洞管理流程随着时间的流逝而增加。监视漏洞固定提交是防止脆弱性开发的标准过程的一部分。但是,由于可能有大量的审查,手动检测漏洞固定的犯罪是耗时的。最近,已经提出了许多技术来自动检测使用机器学习的漏洞固定提交。这些解决方案要么:(1)不使用深度学习,或(2)仅对有限的信息来源使用深度学习。本文提出了藤条,该工具利用了更丰富的信息来源,包括提交消息,代码更改和针对漏洞固定的提交分类的报告。我们的实验结果表明,在F1得分方面,沃尔维尔剂的表现优于最先进的基线。 Vulcurator工具可在https://github.com/ntgiang71096/vfdetector和https://zenodo.org/record/7034132#.yw3mn-xbzdi上公开获得。
translated by 谷歌翻译
构建静态呼叫图需要在健全和精度之间进行权衡。不幸的是,用于构建呼叫图的程序分析技术通常不精确。为了解决这个问题,研究人员最近提出了通过机器学习为静态分析构建的后处理呼叫图所授权的呼叫图。机器学习模型的构建是为了通过在随机森林分类器中提取结构特征来捕获呼叫图中的信息。然后,它消除了预测为误报的边缘。尽管机器学习模型显示了改进,但它们仍然受到限制,因为它们不考虑源代码语义,因此通常无法有效地区分真实和误报。在本文中,我们提出了一种新颖的呼叫图修剪技术AutoRoprouner,用于通过统计语义和结构分析消除呼叫图中的假阳性。给定一个由传统静态分析工具构建的呼叫图,AutoProuner采用基于变压器的方法来捕获呼叫者与呼叫图中每个边缘相关的呼叫者和Callee函数之间的语义关系。为此,AutoProuner微型调节模型是在大型语料库上预先训练的代码模型,以根据其语义的描述表示源代码。接下来,该模型用于从与呼叫图中的每个边缘相关的功能中提取语义特征。 AutoProuner使用这些语义功能以及从呼叫图提取的结构特征通过馈送前向神经网络分类。我们在现实世界程序的基准数据集上进行的经验评估表明,AutoProuner的表现优于最先进的基线,从而改善了F量级,在识别静态呼叫图中识别错误阳性边缘方面,高达13%。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
深度学习方法为多级医学图像细分实现了令人印象深刻的表现。但是,它们的编码不同类别(例如遏制和排除)之间拓扑相互作用的能力受到限制。这些约束自然出现在生物医学图像中,对于提高分割质量至关重要。在本文中,我们介绍了一个新型的拓扑交互模块,将拓扑相互作用编码为深神经网络。该实施完全基于卷积,因此非常有效。这使我们有能力将约束结合到端到端培训中,并丰富神经网络的功能表示。该方法的功效在不同类型的相互作用上得到了验证。我们还证明了该方法在2D和3D设置以及跨越CT和超声之类的不同模式中的专有和公共挑战数据集上的普遍性。代码可在以下网址找到:https://github.com/topoxlab/topointeraction
translated by 谷歌翻译